
The economics of orbital transportation

By Akhil Rao∗

Transportation through outer space involves a sequence of trans-
fer orbits to move a payload from origin to destination. Transfer
orbits are often chosen with the goal of minimizing either the en-
ergy required or time taken for the trip. Commercial shippers will
instead choose transfer orbits to maximize delivery profits. When
payment is received upon delivery and the opportunity cost of funds
is positive, profit-maximizing transfer orbits may minimize neither
trip energy nor time. Such “interior transfer orbits” balance the
marginal present value from quicker delivery against the marginal
cost of energy expenditures to reduce delivery time.

The current growth in commercial space activity promises and is predicated
on a space economy where payloads will be transported through outer space.
Such transportation is likely to remain in Earth’s orbital space for the immedi-
ate future, but may soon expand to include the Earth-Moon system and beyond.
Transportation activities to be conducted in Earth’s orbital space include satellite
servicing, while activities in the Earth-Moon system and beyond include space
mining operations and the construction and maintenance of space habitats.

Transporting objects through outer space involves calculating “transfer orbits”
which link circular orbits at the origin and destination. Even when the origin is a
point on a planetary surface or in deep space, the path from origin to destination
may be modeled as a sequence of transfer orbits. Optimizing transfer orbits is
critical for mission success. The majority of existing scientific and engineering re-
search on transfer orbits focuses on paths which, subject to idiosyncratic mission
constraints, minimize either the energy required (e.g. Hohmann and bi-elliptical
orbits) for the trip or the time taken (e.g. fast orbits). Minimizing trip energy
or trip time is typically well-suited for budget-constrained research missions or
missions delivering time-sensitive payloads.

Commercial shipping through outer space involves a different objective: max-
imizing profits. The shipper is paid for their services at least partially upon
delivery, and discounts the future according to their opportunity cost of waiting
for payment. Making the delivery costs energy, and within technological limits
additional energy can be used to reduce the time taken. Feasible delivery times
can range from the order of hours or days for delivery in the Earth-Moon system
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to the order of months or years for deeper-space missions. The shipper’s objective
therefore incorporates the time value of the payment received upon delivery and
the current costs incurred to supply energy for the trip.

Solving the commercial shipper’s profit maximization problem reveals that
energy-minimizing transfer orbits are only optimal when the payment upon de-
livery and the opportunity cost of waiting for payment are sufficiently low rela-
tive to the marginal energy cost of additional delivery speed. Conversely, time-
minimizing transfer orbits are only optimal when the payment upon delivery and
the opportunity cost of waiting for payment are sufficiently high. For intermediate
cases, the profit-maximizing sequence of transfer orbits is “interior”: it minimizes
neither the trip energy nor the trip time. Instead, it balances the marginal present
value from receiving the payment sooner against the marginal cost of the energy
required to reduce delivery time.

I. A model of commercial orbital transportation

A commercial space shipper transports a payload from an origin to a destination
at non-relativistic speeds. The payment received upon delivery is p, discounted ex-
ponentially at rate r.1 The shipper uses J units of energy to transport the payload
in T units of time. Given a level of energy, the minimum-time path from origin to
destination takes T̄ > 0 units of time, while given a delivery time the minimum-
energy path takes J̄ > 0 units of energy. Energy for the trip costs the shipper c(J)
units of money, where costs are increasing and weakly convex (c′ > 0, c′′ ≥ 0).
Shipments may be delivered using a transport technology such as rockets, ion
thrusters, or light sails. The transport technology and environmental conditions
such as the relative masses and positions of celestial bodies along the path de-
termine the feasible transformations between energy and time. Abstracting from
the choice of transport technology and the present environmental conditions, the
shipper requires f(T ) units of energy to achieve delivery time T . Additional de-
livery speed requires an increasing amount of energy (f ′ < 0). Instantaneous and
zero-energy deliveries are infeasible (limT→0 f(T ) =∞, limT→∞ f(T ) = 0), so the
minimum-time path costs energy (J(T̄ ) > 0) and the minimum-energy path takes
time (T (J̄) > 0).2 Minimum-time and minimum-energy paths differ, so J̄ 6= J(T̄ )
and vice versa. The shipper chooses the energy supply for the trip J and delivery
time T to maximize profits, solving

1A flat up-front payment can be ignored without loss of generality, since it enters delivery profits as
an additive constant. Up-front payments which vary with delivery time can alter marginal trade-offs,
but as long as customers pay more for earlier delivery the essence of the main result is unchanged.

2This rules out degenerate deliveries where origin is the same as destination.
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max
T,J

e−rT p− c(J)(1)

s.t. f(T ) = J,

J ≥ J̄ , T ≥ T̄ .

Program 1 describes the choice of profit-maximizing shipping energy and deliv-
ery time for any type of trajectory from origin to destination, whether a simple
single-impulse transfer orbit or a more complex sequence of maneuvers. While
simple deliveries across relatively short distances will likely have a single profit-
maximizing solution, more complex deliveries across longer distances may have
multiple solutions. The properties of the energy supply, technology, and envi-
ronmental conditions encoded in c and f will determine the uniqueness of the
profit-maximizing orbital transportation solution.

Define the marginal cost of energy to reduce delivery time (“marginal cost
of quicker delivery”) in terms of money per unit time as −c′(J)f ′(T ) and the
marginal present value from receiving payment sooner (“marginal benefit of quicker
delivery”) as rpe−rT .3 Proposition 1 describes when it is profit-maximizing to use
a minimum-energy orbit, a minimum-time orbit, or an interior orbit.

Proposition 1 (Optimal transfer orbits). The profit-maximizing sequence of
transfer orbits minimizes trip energy (J = J̄ , T > T̄ ) when

(2) rpe−rT ≤ −c′(J̄)f ′(T ),

minimizes trip time (J > J̄, T = T̄ ) when

(3) rpe−rT̄ ≥ −c′(J)f ′(T̄ ),

and minimizes neither trip energy nor trip time when there exist T > T̄ and
J > J̄ such that

(4) rpe−rT = −c′(J)f ′(T ).

The proof is straightforward but cumbersome, so is relegated to the appendix.

Proposition 1 shows that shippers receiving no payment upon delivery will
find it optimal to minimize trip energy. Conversely, missions with early-delivery
bonuses, late-delivery penalties, or high financing costs may find it optimal to
minimize trip time. In between are missions with intermediate levels of pay-
ment upon delivery and discount rates. Shippers with such missions will find it

3For shippers with short trips or a low opportunity cost of waiting for payment, the marginal benefit
of quicker delivery is approximately rp.
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optimal to use interior solutions which minimize neither trip energy nor trip time.

For example, consider a shipper who wishes to transport lunar ice from the
surface of the Moon to satellites orbiting the Earth for use as propellant. Us-
ing minimum-energy trajectories, the shipper calculates they can profitably serve
satellites as far from the Moon as the geostationary belt (roughly 36,000km above
mean sea level on the Earth and 348,000km from the surface of the Moon). The
shipper is transporting 200kg of lunar ice, the trip will take around 1 day using
an energy-minimizing path, and the relevant discount rate is 1%. The satellite
customer will pay $500/kg of lunar ice upon delivery for a total delivery payment
of $100,000, and the marginal cost of quicker delivery is $500 per hour of trip
time reduced. Is it profitable to spend more money on travel energy in order to
reduce delivery time? Checking the conditions in Proposition 1, we find it is:
the marginal benefit of quicker delivery is roughly $990 per hour saved, nearly
double the marginal cost. The shipper’s insistence on minimum-energy transfers
is leading them to miss profitable opportunities along costlier paths.

Analysis of the proof of Proposition 1 also reveals how shippers will value im-
provements in minimum-energy or minimum-time paths when those are optimal.
When a minimum-energy path is optimal, the marginal value of a lower-energy
orbital transportation solution is the marginal savings per unit of reduced en-
ergy consumption minus the marginal present value of receiving payment later
per unit of additional energy saved. When a minimum-time path is optimal, the
marginal value of a faster orbital transportation solution is the marginal present
value of receiving payment sooner minus the marginal cost of energy required to
go faster. Sustained improvements in minimum-energy paths, whether through
technological improvements or environmental changes, may reduce the marginal
cost of quicker delivery by enough that interior paths become optimal.

II. Conclusion

The size of the payment received upon delivery, the shipper’s opportunity cost
of waiting for payment, and the technological and environmental feasibility of con-
verting money into more energy and less time will determine profit-maximizing
orbital transportation solutions. Minimum-energy or minimum-time transfer or-
bits are unlikely to maximize the shipper’s profits when there is a substantial
payment upon delivery or a sufficiently high opportunity cost of waiting for pay-
ment. Instead, profit-maximizing paths will tend to balance the marginal costs
of quicker delivery against the marginal benefits of being paid sooner, producing
interior transfer orbits which minimize neither trip energy nor trip time.
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Mathematical Appendix

Proposition 1 (Optimal transfer orbits). The profit-maximizing sequence of
transfer orbits minimizes trip energy (J = J̄ , T > T̄ ) when

(2) rpe−rT ≤ −c′(J̄)f ′(T ),

minimizes trip time (J > J̄, T = T̄ ) when

(3) rpe−rT̄ ≥ −c′(J)f ′(T̄ ),

and minimizes neither trip energy nor trip time when there exist T > T̄ and
J > J̄ such that

(4) rpe−rT = −c′(J)f ′(T ).

PROOF:

The Lagrangian for the shipper’s optimization problem is

L = e−rT p− c(J) + λ(J − f(T )) + γJ(J − J̄) + γT (T − T̄ ).

The first-order necessary conditions for an optimum are

rpe−rT = −λf ′(T ) + γT

c′(J) = λ+ γJ

λ(J − f(T )) = 0

γJ(J − J̄) = 0

γT (T − T̄ ) = 0.

If the relevant paths between origin and destination are simple (e.g., one- or
two-impulse paths) then f will be monotone decreasing and convex, and the first-
order conditions will have a unique solution. If the paths are more complex (e.g.,
multi-impulse paths for satellite proximity operations and deep space missions),
there may be multiple solutions to the first-order conditions.

When minimum-energy paths are optimal: In this case we have J =
J̄ , T > T̄ and λ ≥ 0, γT = 0, γJ ≥ 0. The necessary conditions reduce to

rpe−rT = −λf ′(T )

c′(J̄) = λ+ γJ .

This implies the shadow price of additional usable energy received for free (λ)
is equal to the marginal present value of receiving payment slightly sooner per
unit of additional energy used, and the shadow price of a lower-energy orbital
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transportation solution (γJ) is the marginal savings per unit of reduced energy
consumption minus the marginal present value of receiving payment slightly later
per unit of additional energy saved. That is,

λ = −rpe
−rT

f ′(T )
≥ 0,

γJ = c′(J̄)︸ ︷︷ ︸
>0

+
rpe−rT

f ′(T )︸ ︷︷ ︸
≤0

≥ 0,

with the final inequality holding by assumption that γJ ≥ 0.

When minimum-time paths are optimal: In this case we have J > J̄, T =
T̄ and λ ≥ 0, γT ≥ 0, γJ = 0. The necessary conditions reduce to

rpe−rT̄ = −λf ′(T̄ ) + γT

c′(J) = λ.

This implies the shadow price of additional usable energy received for free is
equal to the marginal savings from not having to pay for the energy, and the
shadow price of a faster orbital transportation solution (γT ) is the marginal
present value of receiving payment slightly sooner minus the marginal cost of
energy required to go slightly faster. That is,

λ = c′(J) > 0,

γT = rpe−rT̄︸ ︷︷ ︸
≥0

+ c′(J)f ′(T̄ )︸ ︷︷ ︸
<0

≥ 0,

with the final inequality holding by assumption that γT ≥ 0.

When interior paths are optimal: In this case we have J > J̄, T > T̄ and
λ ≥ 0, γT = 0, γJ = 0. The necessary conditions reduce to

rpe−rT̄ = −λf ′(T̄ )

c′(J) = λ.

As in the minimum-time case, the shadow price of additional usable energy
received for free is equal to the marginal savings from not having to pay for the
energy. The profit-maximizing orbital transportation solution will have energy
use J and delivery time T to satisfy

rpe−rT = −c′(J)f ′(T ).


